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SYMPOSIUM

Abstract
Arguably, a minimally invasive system using subcutaneous (s.c.) continuous glucose monitoring (CGM) and 
s.c. insulin delivery via insulin pump would be a most feasible step to closed-loop control in type 1 diabetes 
mellitus (T1DM). Consequently, diabetes technology is focusing on developing an artificial pancreas using 
control algorithms to link CGM with s.c. insulin delivery. The future development of the artificial pancreas 
will be greatly accelerated by employing mathematical modeling and computer simulation. Realistic computer 
simulation is capable of providing invaluable information about the safety and the limitations of closed-loop 
control algorithms, guiding clinical studies, and out-ruling ineffective control scenarios in a cost-effective 
manner. Thus computer simulation testing of closed-loop control algorithms is regarded as a prerequisite to 
clinical trials of the artificial pancreas.

In this paper, we present a system for in silico testing of control algorithms that has three principal components: 
(1) a large cohort of n = 300 simulated “subjects” (n = 100 adults, 100 adolescents, and 100 children) based on real 
individuals’ data and spanning the observed variability of key metabolic parameters in the general population 
of people with T1DM; (2) a simulator of CGM sensor errors representative of Freestyle Navigator™, Guardian 
RT, or Dexcom™ STS™, 7-day sensor; and (3) a simulator of discrete s.c. insulin delivery via OmniPod Insulin 
Management System or Deltec Cozmo® insulin pump.

The system has been shown to represent adequate glucose fluctuations in T1DM observed during meal 
challenges, and has been accepted by the Food and Drug Administration as a substitute to animal trials in the 
preclinical testing of closed-loop control strategies.
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Introduction

Over thirty years ago, the possibility for external 
regulation of blood glucose (BG) in people with diabetes 
has been established by studies using intravenous (i.v.) 
glucose measurement and i.v. infusion of glucose and 
insulin. Systems such as the Biostator™ have been 
introduced and used in hospital settings to maintain 
normoglycemia by exerting both positive (via glucose 
or glucagon) and negative (via insulin) control.1–5  
A detailed description of the major early designs, 
including proportional integral derivative (PID) and 
model-predictive control (MPC) can be found in the 
literature.6–11 More work followed, spanning a broader 
range of BG control techniques, such as pole placement,11 
adaptive control,12,13 physiologic modeling,14 control 
specific to intensive care units,15 or linear quadratic 
Gaussian optimization.16,17 However, i.v. closed-loop 
control remains cumbersome and unsuited for outpatient 
use. An alternative to extracorporeal i.v. control has been 
presented by implantable i.v.–intraperitoneal systems 
employing i.v. sampling and intraperitoneal insulin 
delivery.18–20 With the advent of minimally invasive 
subcutaneous (s.c.) continuous glucose monitoring (CGM), 
increasing academic, industrial, and political effort has 
been focused on the development of s.c.–s.c. systems, 
generally using CGM coupled with insulin infusion 
pump and a control algorithm.21,22 So far, encouraging 
pilot results have been reported.23,24 A recent United 
States Senate hearing emphasized the artificial pancreas 
initiative.25 In September 2006, the Juvenile Diabetes 
Research Foundation (JDRF) initiated the Artificial 
Pancreas Project and funded a consortium of university 
centers to carry closed-loop glucose control research.26 

These centers include Cambridge University, University of 
Colorado, Sansum Diabetes Research Institute, Stanford 
University, University of Virginia, and Yale University. 
In 2007, a group at Boston University joined the JDRF 
Artificial Pancreas Consortium.

The future development of the artificial pancreas will be 
greatly accelerated by employing mathematical modeling 
and computer simulation. Numerous precedents from 
the history of engineering support this assertion.  
A prime example is the Boeing 777 jetliner, which has 
been recognized as the first airplane to be 100% digitally 
designed and assembled in a computer simulation 
environment. This virtual design has eliminated the 
need for many costly experiments and accelerated the 
development process, significantly reducing the time 
before the final extensive ground and flight testing began. 

The result has been impressive: the 777s flight deck and 
passenger cabin received the Design Excellence Award 
of the Industrial Designers Society—the first time any 
airplane was recognized by the society.27

As with the design of any complex engineering system, 
realistic computer simulation can provide invaluable 
information about the safety and limitations of closed-
loop control algorithms, can guide and focus the 
emphasis of clinical studies, and can out-rule ineffective 
control scenarios in a cost-effective manner prior to 
human use. In the area of diabetes, accurate computer-
simulation prediction of clinical trials has been done by the 
Archimedes diabetes model;28,29 a company—Entelos, Inc.—
specializes in predictive biosimulation and, in particular, 
has developed a diabetes simulator. Most existing 
diabetes simulators, however, are based on population 
models. As a result, their capabilities are generally 
limited to prediction of population averages that would 
be observed during clinical trials. Therefore, for the 
purposes of artificial pancreas development, a different 
type of computer simulator is needed—a system that is 
capable of simulating the glucose–insulin dynamics of a 
particular person. In other words, a simulator of type 1 
diabetes mellitus (T1DM) should be equipped with a 
cohort of in silico “subjects” that spans sufficiently well 
the observed interperson variability of key metabolic 
parameters in the general population of people with 
T1DM. In silico subjects are typically created by fitting 
a metabolic model to data of individuals collected  
during clinical trials. Various glucose–insulin models30–32,14 

have been developed to serve this purpose, with the first 
two already used for testing of control scenarios.

The next logical step of in silico preclinical trial has been 
taken. In January 2008, a computer simulator of T1DM 
developed by our group has been accepted by the 
Food and Drug Administration (FDA) as a substitute 
to animal trials for the preclinical testing of control 
strategies in artificial pancreas studies.33 Arguably, large-
scale simulations would account better for intersubject 
variability than small-size animal trials and would 
allow for more extensive testing of the limits and 
robustness of control algorithms. Thus the simulator was 
immediately put to its intended use, and in April 2008, 
an investigational device exemption (IDE) was granted 
by the FDA for a closed-loop control clinical trial. This 
IDE was issued solely on the basis of in silico testing of 
the safety and effectiveness of the proposed artificial 
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pancreas algorithm, an event that sets a precedent for 
future preclinical studies. Thus the following paradigm 
has emerged: (i) in silico modeling could produce credible 
preclinical results that could substitute certain animal 
trials, and (ii) in silico testing yields these results in a 
fraction of the time required for animal trials. 

We will now describe the steps enabling the in silico  
development and testing of closed-loop control 
algorithms. We need to emphasize, however, that good 
in silico performance of a control algorithm does not 
guarantee in vivo performance—it only helps to test 
extreme situations and the stability of the algorithm 
and to out-rule inefficient scenarios. Thus computer 
simulation is only a prerequisite to, but not a substitute 
for, clinical trials. 

Methods
The principal components of a computer simulation 
environment recreating in silico a closed-loop control 
system are presented in Figure 1.

1.	 A sufficiently large cohort of in silico subjects based 
on real individual data and spanning the observed 
variability of key parameters in the general 
population. In this implementation the simulated 

“cohort” includes n = 300 simulated subjects in 
three age groups: 100 adults, 100 adolescents, and 

100 children. Table 1 presents key demographic 
and metabolic parameters of these subjects. The 
carbohydrate (CHO) ratio is calculated as the 
largest bolus in insulin units per grams of CHO 
that does not create a drop in plasma glucose lower 
than 95% of fasting plasma glucose after a meal 
containing 50 g CHO. The total daily insulin was 
computed based on a 200 g CHO daily diet, using a 
basal rate maintaining fasting glucose and the CHO 
ratio. Insulin sensitivity in the simulator consists of 
several components such as insulin effect on glucose 
utilization and insulin effect on glucose production. 
Insulin effect on glucose utilization is included in 
Table 1.

2.	 Sensor-specific simulator of sensor errors capable 
of reproducing the time lag, system and calibration 
bias, and random noise of s.c. CGM devices: 
The characteristics of three devices have been 
implemented: Freestyle Navigator™ (Abbott Diabetes 
Care, Alameda, CA), Guardian RT (Medtronic, 
Northridge, CA), and Dexcom™ STS™, 7-day sensor 
(Dexcom, Inc., San Diego, CA). 

3.	 The model of insulin kinetics in the s.c. space: 
Because insulin pumps typically deliver discrete 
insulin subcutaneously, one has to account for the 
time lag inherent with the insulin transport from s.c. 
space to plasma. The characteristics of two insulin 

Figure 1. Principal components of computer simulation environment: a model of the glucose–insulin system; a model of sensor error; the controller  
to be tested; and a model of insulin pump and s.c. insulin kinetics.
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pumps have been implemented: OmniPod Insulin 
Management System (Insulet Corp., Bedford, MA) 
and Deltec Cozmo® (Smiths Medical MD, Inc.,  
St. Paul, MN). 

In Silico Subjects
The mathematical model providing the base for the  
in silico subjects of the simulation environment has been 
described in detail in previous publications. Specifically, 
the previously reported glucose–insulin meal model of 
Dalla Man and Cobelli30,31 serves as the foundation for 
the simulation environment. Briefly, the model assumes 
that the glucose and insulin subsystems are linked 
one to each other by the control of insulin on glucose 
utilization and endogenous production. The glucose 
subsystem consists of a two-compartment model of 
glucose kinetics. The insulin subsystem also consists of 
two compartments, the first representing the liver and 
the second the plasma. Endogenous glucose production, 
glucose rate of appearance, and glucose utilization are 
the most important model unit processes. Suppression 
of endogenous glucose production is assumed to be 
linearly dependent on plasma glucose concentration, 
portal insulin concentration, and a delayed insulin signal. 
Glucose intestinal absorption describes the glucose 
transit through the stomach and intestine by assuming 
the stomach to be represented by two compartments (one 
for solid and one for liquid phase); a single compartment 
is used to describe the gut, and the rate constant of 
gastric emptying is a nonlinear function of the amount  
of glucose in the stomach. Glucose utilization is the sum 
of two terms: a constant insulin-independent utilization, 
which takes place in the first compartment, representing 
glucose uptake by the brain and erythrocytes, and 
insulin-dependent utilization, which occurs in a remote 
compartment, representing peripheral tissues and 
depending nonlinearly on glucose in the tissues. Renal 
excretion by the kidney is also taken into account 

and is assumed to occur if plasma glucose exceeds a 
certain threshold. The model has 26 free parameters, 
among which the most important are hepatic and 
peripheral insulin sensitivity, i.e., the ability of plasma 
insulin to inhibit endogenous glucose production and 
enhance glucose disposal, respectively. We should note 
that, at least in principle, all model parameters, and in 
particular insulin sensitivity, could vary during the 
day. However, diurnal variation of model parameters 
is not yet taken into account in the model due to lack 
of quantitative knowledge on these phenomena. Once 
the set of equations defining in silico subjects is laid out,  
in silico cohort is created by generating parameter vectors 
spanning the parameter space observed in T1DM. 

In Silico Sensor 
In silico sensor is developed on the basis of analysis of 
sensor errors. In general, CGM provides a detailed time 
series of consecutive observations upon the underlying 
process of glucose fluctuations. However, a number 
of studies have concluded that despite eight years 
of development, CGM technology continues to face 
challenges in terms of sensitivity, stability, calibration,  
and the physiological time lag between blood and 
interstitial glucose concentration.34–40 While testing sensor 
accuracy, these studies have typically generated large 
amounts of sensor–reference glucose data pairs, thereby 
allowing the decomposition of sensor errors into errors due 
to calibration, blood-to-interstitial glucose transfer, and 
random noise.41 After generating a random calibration 
error, the components of sensor error can be modeled as 
a combination of blood-to-interstitium glucose transport 
plus a nonwhite noise. The composition of sensor errors 
is described in detail by Breton and Kovatchev.42 In 
some sense, this sensor simulation model provides worst-
case scenario sensor errors; we anticipate that the real  
sensor errors would tend to be smaller during controlled 
inpatient clinical trials. 

Table 1.
Key Demographic and Metabolic Parameters of the In Silico Subjects Available in the Simulation Environment a

Adults Adolescents Children

Parameter Mean (SD) Min Max Mean (SD) Min Max Mean (SD) Min Max

Mean Weight (kg) (SD) 79.7 (12.8) 52.3 118.7 54.7 (9.0) 37.0 88.7 39.8 (6.8) 27.6 60.7

Insulin (U/day) 47.2 (15.2) 21.3 98.4 53.1 (18.2) 22.6 141.5 34.6 (9.1) 17.6 56.1

CHO ratio (g/U) 10.5 (3.3) 4.6 21.1 9.3 (2.9) 3.2 19.9 14.0 (3.8) 8.0 25.5

Fasting plasma glucose (mg/dl) 143.4 (9.33) 122.1 167.1 144 (7.8) 124 166.3 142.9 (8.5) 125.5 168.4

Insulin effect on glucose utilization 
(10-2 mg/kg/min per pmol/liter)

3.82 (1.34) 1.08 8.08 3.06 (1.67) 0.95 40.87 12.58 (5.64) 3.61 35.38

a SD, standard deviation.
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In Silico Insulin Pump 
In silico insulin pump is used to approximate s.c. insulin 
delivery, taking into account (i) time and dynamics 
of insulin transport from s.c. tissue into blood and  
(ii) discrete insulin infusion corresponding to stepwise 
basal pump rate and insulin boluses. Several models 
of s.c. insulin kinetics have been published.43,44 In the 
simulation environment, we used the two-compartment 
model presented in detail by Dalla Man et al.,31 which 
includes approximation of nonmonomeric and monomeric 
insulin in the s.c. space. 

Software Implementation
In order to create a comprehensive algorithm testing 
environment, the simulation methods described earlier 
have been implemented into a computerized simulation 
platform using Simulink®, which is part of the larger 
scientific software MATLAB®. Figure 2 presents the main 

user interface window of the software, which allows for 
(1) defining a testing scenario, i.e., a schedule of meals 
with corresponding CHO amounts; (2) selecting subjects, 
where specific subgroups (i.e., adults) or specific subjects 
could be selected or the simulation could be run on 
the entire cohort; (3) selecting CGM sensor and insulin 
pump; and (4) selecting a set of outcome metrics.

The set of metrics of glucose control implemented within 
the simulation environment includes several measures 
of average glycemia, temporal glucose variability, and 
associated risks for hypoglycemia and hyperglycemia, 
which have been shown to be quite sensitive to the effects 
of various treatments.45,46 Several graphs are included 
as well, ranging from glucose traces and individual 
Poincaré plots of glucose dynamics45 to control-variability 
grid analysis (CVGA).47 Table 2A presents the outcome 
metrics, and Table 2B presents the graphs that can be 
produced for each in silico trial.

Table 2.
Key Demographic and Metabolic Parameters of the In Silico Subjects Available in the Simulation Environment a

A: Numerical Measures of Average Glycemia, Deviations from Target, Variability, and Risk Associated with Extreme Glucose Deviations

Mean BG Computed from CGM or BG data for the entire test.

Mean premeal BG Mean BG restricted to time window 60–0 min premeals.

Mean postmeal BG Mean BG restricted to time window 60–120 min postmeals.

% time spent within target range 
of 70–180 mg/dl; below 70 and 
above 180 mg/dl; and below 50 
and above 300 mg/dl

For CGM, this is generally equal to % readings within each of these ranges. For BG measurements that 
are not equally spaced in time, we suggest calculating the % time within each range via linear interpolation 
between consecutive glucose readings. 

% time within fasting target of 
70–145 mg/dl

It is suggested that for overnight control the target range is restricted to 70–145 mg/dl.

Area-under-the-curve per gram 
CHO

Optional. Computed from the beginning of a meal for 3 h, provided that no other meal occurs during this 
time.

LBGI Measure of the frequency and extent of low BG readings.

HBGI Measure of the frequency and extent of high BG readings.

SD of BG rate of change A measure of the stability of closed-loop control over time. 

B: Glucose Plots and Composite Graphs

Glucose trace Traditional plot of frequently sample glucose data.

Aggregated glucose trace 
Corresponds to time spent below/within/above a preset target range. Visualizes the crossing of glycemic 
thresholds.

Density plot
Represents the distribution of glucose values with overlaid % time spent inside/outside target.

Risk trace 
Corresponds to LBGI, HBGI, and BGRI. Designed to equalize the size of glucose deviations toward hypo- 
and hyperglycemia, emphasize large glucose excursions, and suppress fluctuation within target range, 
thereby highlighting essential variance.

Histogram of BG rate of change 
Represents the spread and range of glucose transitions. Related to system stability. Corresponds to SD of 
BG rate of change.

Poincaré plot Represents the spread of the system attractors and can be used for detection of cyclic glucose 
fluctuations (optional).

CVGA
Represents the effectiveness of closed-loop control at a group level. Corresponds to event-based control 
characteristics.

a BGRI, BG risk index; HBGI, high BG index; LBGI, low BG index; SD, standard deviation.
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Figure 2. Main user interface window of the simulation software.
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Results

In Silico Subjects 
To illustrate the use of the simulation environment, we 
now present several examples of its application. Figure 3  
illustrates the in silico testing of a 5-unit premeal 
insulin bolus followed by ingestion of 75 g CHO. The 
upper panel of Figure 3 presents the glycemic reaction 
of three simulated subjects, while the lower panel 
presents the simulated plasma insulin concentrations. 
Both the plasma glucose fluctuations and the plasma 
insulin concentrations are individual, depending on the 
metabolic parameters of each simulated subject and are 
similar to insulin and glucose concentrations measured 
in vivo (see Figure 1 in Reference 30), which supports  
the credibility of the simulations.

In general, the validity of the cohort of in silico subjects 
has been tested by several experiments aiming to assess 
its capability to reflect a variety of clinical situations 
as closely as possible. These experiments included the 
following:

1.	 Reproducing the distribution of insulin correction 
factors in the T1DM population of children and 
adults, which guarantees that the variability in the 
action of insulin administered by control algorithms 
would accurately reflect the variability in observed 
insulin action;32

2.	 Reproducing glucose traces in children with T1DM 
observed in clinical trials performed by the JDRF 
Continuous Glucose Monitoring Study Group;48 and

Figure 3. Simulated glucose and insulin traces of three different subjects that received the same amounts of CHO (75 g) and insulin (5 U) at the 
same time.
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3.	 Reproducing glucose traces of induced moderate 
hypoglycemia observed in adults in clinical trials at 
the University of Virginia.

In Silico Sensor
Figure 4 presents the steps of adding an in silico sensor, 
which monitors the glucose fluctuations of an in silico 
subject (red curve). First, interstitial glucose delay (blue 
curve) is added using the diffusion model presented 
in the previous section. Then, autoregressive moving 
average error is added to account for random errors, 
resulting in simulated CGM (green curve).

To verify the simulation of a CGM device, we conducted 
multiple experiments generating simulated sensor errors. 
Then we computed the frequency table of empirical 

versus simulated distribution of sensor errors using 
Navigator data sets (56 sensors implanted on 28 patients). 
The premise behind this verification is that when a 
sensor simulation is initialized, the corresponding output 
should be a set of sensor errors with a distribution 
that is not different from that the error distribution of 
a real sensor. A Chi-square test showed that we cannot 
reject the null hypothesis: no significant difference 
exists between the simulated and the real distribution of 
sensor errors (p > .46). Table 3 presents the simulated and 
observed distributions across several bins, covering all 
possible error values. It is evident that the empirical and 
simulated error frequencies are indeed very close.

In Silico Insulin Pump
A major feature of computer simulation is its ability 
to subject the tested control algorithm to extreme 
scenarios that cannot be tested in vivo. The experiment 
presented in Figure 5 simulates an unlikely worst-case 
scenario taking place during the use of a Deltec Cozmo 
insulin pump—a complete discharge of the entire 
pump reservoir at maximum infusion rate. The entire 
reservoir of the pump contains 300 units of insulin, and 
the maximum pump rate during a bolus is 150 units/h.  
We present the results for three in silico subjects who, 
prior to the pump failure, are stable at a glucose level of 
110 mg/dl, without recent meal. A subject with very high 
insulin sensitivity—at the 99th percentile of the cohort 
of in silico subjects—would reach 90 mg/dl after 27.5 min 
and would reach 70 mg/dl after 37.5 min. For a subject  
with very low insulin sensitivity (<10th percentile of the 
cohort of in silico subjects), these times would be over  
1.5 and 2 h, respectively.

Figure 4. Simulation of CGM errors: example of ideal plasma glucose (red), ideal interstitial glucose (blue), and noisy interstitial glucose (green).
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Table 3.
Empirical Versus Simulated Frequency of the Errors 
of FreeStyle Navigator

Bins
Empirical 

frequency (%)
Simulated 

frequency (%)

[-∞,-30] mg/dl 0.5 0.6

[-30,-20] mg/dl 2.9 1.9

[-20,-10] mg/dl 11.4 12.2

[-10,0] mg/dl 34.6 36

[0,10] mg/dl 33.9 30.7

[10,20] mg/dl 11.4 12.4

[20,30] mg/dl 3.5 3.9

[30,∞] mg/dl 1.8 2.2
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Testing of Closed-Loop Control Algorithms
As stated in the Introduction, testing of the robustness 
and the limits of closed-loop control algorithms is the 
primary use of the computer simulation environment.  
In order to perform such a test, the following steps can 
be simulated prior to testing:

1.	 The in silico subjects can be screened, and 
anthropometric data can be recorded as needed for  
the initialization of the control algorithm; and

2.	 The in silico subjects can be subjected to tests, such as 
oral glucose tolerance test, which may help deriving 
additional parameters for the initialization of the 
control algorithm.

Once these optional steps are completed, in silico sensor 
and insulin pump are applied to the subjects, and then 
a testing scenario is defined, i.e., a list of the timing and 
CHO amount of various meals is specified. Here we will 
illustrate the utility of the simulator for selecting a  
control algorithm. Figure 6 presents three identical days  
of testing of an in silico subject with three meals per day.

The green curve represents glucose excursions expected 
in health. The red curve is the control of a subject with 
T1DM by a PID control algorithm similar to the control 
algorithm developed by Steil et al.23 It is evident that 
PID has the propensity to deliver excessive amount of 
insulin and induce hypoglycemia a few hours after a 

Figure 5. Simulation of extreme insulin pump failure locking the pump at maximum insulin infusion rate in subjects with high (top), intermediate 
(middle), and low (bottom) insulin sensitivity. SI, International System of Units.

B
lo

o
d

 g
lu

co
se

 (m
g

/d
l)

B
lo

o
d

 g
lu

co
se

 (m
g

/d
l)

B
lo

o
d

 g
lu

co
se

 (m
g

/d
l)

 by guest on January 26, 2015dst.sagepub.comDownloaded from 

http://dst.sagepub.com/


53

In Silico Preclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes Kovatchev

www.journalofdst.orgJ Diabetes Sci Technol  Vol 3, Issue 1, January 2009

meal–an effect that has been reported also in vivo.23  
We do not exclude the possibility that a different tuning 
of the PID controller would perform better in silico—
this trace represents only an illustration of the use of 
the simulation environment for comparison of various 
control algorithms. The black curve represents the action 
of a MPC algorithm with meal announcement similar 
to the reported by Magni et al.49 or Weinzimer et al.50  
Due to the preemptive insulin delivery, the postprandial 
glucose excursions are attenuated and postprandial hypo-
glycemia is generally avoided.49

Conclusions
Continuous glucose monitoring has already proven its 
utility in optimizing the glycemic control of people  
with diabetes.50–54 Based on CGM and insulin delivery, 
clinical trials of closed-loop control are under way. 
Comprehensive computer simulation has the potential to 
greatly accelerate their progress. The principal components 
of an in silico testing environment should include the 
following: (1) A mathematical model of the human 
metabolic system that accounts as closely as possible 
for the dynamics of the glucose–insulin metabolism; 
(2) An extensive “cohort” of in silico “subjects” with 
widely distributed metabolic parameters that represent 

well the intersubject variability observed in vivo. Such a  
cohort is the key to successful simulation, as its variability 
allows for comprehensive testing of the stability and 
the robustness of closed-loop control; (3) A generator of 
CGM sensor errors. It is worth noting that sensor errors 
are typically not random and are poorly represented  
by white noise. Thus standard techniques based on 
adding independent identically distributed Gaussian 
noise to the output of the glucose–insulin model 
simulation would not produce realistic sensor scenarios.  
Characteristics, such as degree of dependence between 
sequential readings, influence of calibration errors, and 
potential for loss of sensitivity, need to be taken into 
account; (4) A representation of discrete insulin delivery 
and a model of s.c. insulin transport, which describes 
well the significant time delays observed between s.c. 
insulin injection and the appearance of insulin in plasma; 
and (5) A final essential component of both in silico and 
in vivo trials is a set of outcome measures capable of 
capturing the variability-reducing effects of the relatively 
short-term (2–3 days) trials of CGM use or closed-loop 
control.45 With these components in place, comprehensive 
computer-simulation testing of closed-loop control 
becomes possible, allowing for cost-effective investigation 
of the performance of control algorithms with various 
testing scenarios prior to their clinical implementation. 

Figure 6. In silico comparison of plasma glucose concentration during 72 h in an healthy subject (green), a type 1 diabetes subjects controlled with 
a PID (red), and MPC (blue) closed-loop control algorithms.
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A natural next step of bringing in silico experiments to  
the clinical practice was the use of computer simulation 
for the preclinical testing of a new type of model-
predictive closed-loop control algorithm adapted for 
s.c. glucose sensing and insulin delivery.49 This was 
accomplished in two steps. First, the computer simulation 
environment presented in this paper was submitted to 
the FDA with a request for use as a substitute to animal 
trials in our preclinical closed-loop control experiments. 
This request was reviewed positively by the agency, 
and a FDA master file was deposited in January 2008.33 
Second, our request for IDE for a clinical trial of closed-
loop control was approved by the FDA in April 2008, 
based entirely on in silico tests. This precedent would 
allow other investigators to use the route of simulation 
experiments in support of their FDA submissions. It is 
premature, however, to claim that the simulator has a 
FDA approval label—FDA acceptance for certain types 
of preclinical experiments is a correct description of the 
current situation. With the accumulation of clinical data 
supporting the utility and enabling the refinement of the 
simulation environment, we can envision that in silico 
trials would become a mainstream route for preclinical 
experimentation.

Funding:

This study was supported by the JDRF Artificial Pancreas Project  
and by Grant RO1 DK 51562 from the National Institutes of Health.

Acknowledgements:

The authors thank Abbott Diabetes Care and Dexcom Inc. for sharing 
CGM data.

References:

 1.	 Pfeiffer EF, Thum C, Clemens AH. The artificial beta cell—a 
continuous control of blood sugar by external regulation of insulin 
infusion (glucose controlled insulin infusion system).Horm Metab 
Res. 1974;6(5):339–42.

 2.	 Albisser AM, Leibel BS, Ewart TG, Davidovac Z, Botz CK,  
Zingg W. An artificial endocrine pancreas. Diabetes. 1974;23(5):389–96.

 3.	 Clemens AH, Chang PH, Myers RW. The development of Biostator, 
a glucose-controlled insulin infusion system. Horm Metab Res. 
1977;Suppl 7:23–33.

 4.	 Marliss EB, Murray FT, Stokes EF, Zinman B, Nakhooda AF, 
Denoga A, Leibel BS, Albisser AM. Normalization of glycemia in 
diabetics during meals with insulin and glucagon delivery by the 
artificial pancreas. Diabetes. 1977;26(7):663–72.

 5.	 Santiago JV, Clemens AH, Clarke WL, Kipnis DM. Closed-loop 
and open-loop devices for blood glucose control in normal and 
diabetic subjects. Diabetes. 1979;28(1):71–84.

 6.	 Kraegen EW, Campbell LV, Chia YO, Meler H, Lazarus L.  
Control of blood glucose in diabetics using an artificial pancreas. 
Aust N Z J Med. 1977;7(3):280–6.

 7.	 Fischer U, Jutzi E, Freyse E-J, Salzsieder E. Derivation and 
experimental proof of a new algorithm for the artificial beta-cell 
based on the individual analysis of the physiological insulin–
glucose relationship. Endokrinologie. 1978;71:65–75.

 8.	 Clemens AH. Feedback control dynamics for glucose controlled 
insulin infusion system. Med Prog Technol. 1979;6(3):91–8.

 9.	 Broekhuyse HM, Nelson JD, Zinman B, Albisser AM. Comparison 
of algorithms for the closed-loop control of blood glucose using 
the artificial beta cell. IEEE Trans Biomed Eng. 1981;28(10):678–87.

10.	 Cobelli C, Ruggeri A. Evaluation of portal/peripheral route and 
of algorithms for insulin delivery in the closed-loop control of 
glucose in diabetes—a modeling study. IEEE Trans Biomed Eng. 
1983;30(2):93–103.

11.	 Salzsieder E, Albrecht G, Fischer U, Freyse EJ. Kinetic modeling of 
the glucoregulatory system to improve insulin therapy. IEEE Trans 
Biomed Eng. 1985;32(10):846–55.

12.	 Fischer U, Schenk W, Salzsieder E, Albrecht G, Abel P, Freyse EJ.  
Does physiological blood glucose control require an adaptive 
strategy? IEEE Trans Biomed Eng. 1987;34(8):575–82.

13.	 Brunetti P, Cobelli C, Cruciani P, Fabietti PG, Filippucci F, 
Santeusanio F, Sarti E. A simulation study on a self-tuning portable 
controller of blood glucose. Int J Artif Organs. 1993;16(1):51–7.

14.	 Sorensen JT. A physiologic model of glucose metabolism in man 
and its use to design and assess improved insulin therapies for 
diabetes. Ph.D. dissertation. Department of Chemical Engineering: 
MIT; 1985.

15.	 Bequette BW. Analysis of algorithms for intensive care unit blood 
glucose control. J Diabetes Sci Technol. 2007;1(6):813–24.

16.	 Ollerton RL. Application of optimal control theory to diabetes 
mellitus. Int J Control. 1989;50(6):2503–22. 

17.	 Fisher ME. A semi closed-loop algorithm for the control of blood 
glucose levels in diabetics. IEEE Trans Biomed Eng. 1991;38(1):57‑61.

18.	 LeBlanc H, Chauvet D, Lombrail P, Robert JJ. Glycemic control with 
closed-loop intraperitoneal insulin in type I diabetes. Diabetes 
Care. 1986;9(2):124–8.

19.	 Selam JL, Micossi P, Dunn FL, Nathan DM. Clinical trial of 
programmable implantable insulin pump for type I diabetes. 
Diabetes Care. 1992;15(7):877–85.

20.	 Renard E. Implantable closed-loop glucose-sensing and insulin 
delivery: the future for insulin pump therapy. Curr Opin 
Pharmacol. 2002;2(6):708–16.

21.	 Bellazzi R, Nucci G, Cobelli C. The subcutaneous route to insulin-
dependent diabetes therapy. IEEE Eng Med Biol. 2001;20(1):54–64.

22.	 Klonoff DC. The artificial pancreas: how sweet engineering will 
solve bitter problems. J Diabetes Sci Technol. 2007;1(1):72–81.

23.	 Steil GM, Rebrin K, Darwin C, Hariri F, Saad MF. Feasibility of 
automating insulin delivery for the treatment of type 1 diabetes. 
Diabetes. 2006;55(12):3344–50.

24.	 Weinzimer S. Closed-loop artificial pancreas: feasibility studies in 
pediatric patients with type 1 diabetes. Proc 6th Diabetes Technol 
Meeting. 2006. pp. S55.

25.	 The potential of an artificial pancreas: improving care for people 
with diabetes. Senate Hearing. September 27, 2006.

26.	 Emerging Technologies in Diabetes Research. The JDRF  
e-newsletter. September 2006.

27.	 Benhabib B. Manufacturing: design, production, automation and 
integration. Boca Raton: CRC; 2003. 

28.	 Eddy DM, Schlessinger L. Archimedes: a trial-validate model of 
diabetes. Diabetes Care. 2003;26:3093–101.

 by guest on January 26, 2015dst.sagepub.comDownloaded from 

http://dst.sagepub.com/


55

In Silico Preclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes Kovatchev

www.journalofdst.orgJ Diabetes Sci Technol  Vol 3, Issue 1, January 2009

29.	 Eddy DM, Schlessinger L. Validation of the archimedes diabetes 
model. Diabetes Care. 2003;26(11):3102–10.

30.	 Dalla Man C, Rizza RA, Cobelli C. Meal simulation model of the 
glucose–insulin system. IEEE Trans Biomed Eng. 2007;54(10):1740–9.

31.	 Dalla Man C, Raimondo DM, Rizza RA, Cobelli C. GIM, simulation 
software of meal glucose–insulin model. J Diabetes Sci Technol. 
2007;1(3):323–30.

32.	 Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi-Benedetti M,  
Orsini Federici M, Pieber TR, Schaller HC, Schaupp L, Vering T,  
Wilinska ME. Nonlinear model predictive control of glucose 
concentration in subjects with type 1 diabetes. Physiol Meas. 
2004;25(4):905–20.

33.	 Kovatchev BP, Breton MD, Dalla Man C, Cobelli C. In silico model 
and computer simulation environment approximating the human 
glucose/insulin utilization. Food and Drug Administration Master 
File MAF 1521. 2008.

34.	Gerritsen M, Jansen JA, Lutterman JA. Performance of 
subcutaneously implanted glucose sensors for continuous 
monitoring. Neth J Med. 1999;54(4):167–79. 

35.	 Gross TM, Bode BW, Einhorn D, Kayne DM, Reed JH, White NH,  
Mastrototaro JJ. Performance evaluation of the MiniMed continuous 
glucose monitoring system during patient home use. Diabetes 
Technol Ther. 2000;2(1):49–56.

36.	 Cheyne EH, Cavan DA, Kerr D. Performance of continuous glucose 
monitoring system during controlled hypoglycemia in healthy 
volunteers. Diabetes Technol Ther. 2002;4(5):607–13.

37.	 Kovatchev BP, Gonder¬-Frederick LA, Cox DJ, Clarke WL. 
Evaluating the accuracy of continuous glucose-monitoring sensors: 
continuous glucose error-grid analysis illustrated by TheraSense 
Freestyle Navigator data. Diabetes Care. 2004;27(8):1922–8. 

38.	 Clarke WL, Anderson S, Farhy L, Breton M, Gonder-Frederick L,  
Cox D, Kovatchev B. Evaluating the clinical accuracy of two 
continuous glucose sensors using continuous glucose-error grid 
analysis. Diabetes Care. 2005;28(10):2412–7.

39.	 Clarke WL, Kovatchev BP. Continuous glucose sensors: continuing 
questions about clinical accuracy. J Diabetes Sci Technol. 
2007;1(5):669–75.

40.	 Zisser H, Shwartz S, Ratner R, Wise J, Bailey T. Accuracy of a 
seven-day continuous glucose sensor compared to YSI blood 
glucose values. Proc 27th Workshop of the AIDPIT Study Group. 
Innsbruck, Austria. AIDPIT; 2008. p. S03. http://www.aidpit.org. 

41.	 King C, Anderson SM, Breton M, Clarke WL, Kovatchev BP. 
Modeling of calibration effectiveness and blood-to-interstitial 
glucose dynamics as potential confounders of the accuracy of 
continuous glucose sensors. J Diabetes Sci Technol. 2007;1(3):317–22.

42.	 Breton M, Kovatchev B. Analysis, modeling, and simulation of the 
accuracy of continuous glucose sensors. J Diabetes Sci Technol. 
2008;2(5):853–62.

43.	 Nucci G, Cobelli C. Models of subcutaneous insulin kinetics.  
A critical review. Comput Methods Programs Biomed. 
2000;62(3):249–57.

44.	 Wilinska ME, Chassin LJ, Schaller HC, Schaupp L, Pieber TR, 
Hovorka R. Insulin kinetics in type-1 diabetes: continuous and 
bolus delivery of rapid acting insulin. IEEE Trans Biomed Eng. 
2005;52(1):3–12.

45.	 Kovatchev BP, Clarke WL, Breton M, Brayman K, McCall A. 
Quantifying temporal glucose variability in diabetes via continuous 
glucose monitoring: mathematical methods and clinical application. 
Diabetes Technol Ther. 2005;7(6):849–62.

46.	 McCall A, Cox DJ, Crean J, Gloster M, Kovatchev BP. A novel 
analytical method for assessing glucose variability: using CGMS in 
type 1 diabetes mellitus. Diabetes Technol Ther. 2006;8(6):644–53.

47.	 Magni L, Raimondo DM, Dalla Man C, Breton M, Patek S,  
De Nicolao G, Cobelli C, Kovatchev BP. Evaluating the efficacy of 
closed-loop glucose regulation via control-variability grid analysis. 
J Diabetes Sci Technol. 2008;2(4):630–5.

48.	 The Juvenile Diabetes Research Foundation Continuous Glucose 
Monitoring Study Group, Tamborlane WV, Beck RW, Bode BW, 
Buckingham B, Chase HP, Clemons R, Fiallo-Scharer R, Fox LA,  
Gilliam LK, Hirsch IB, Huang ES, Kollman C, Kowalski AJ,  
Laffel L, Lawrence JM, Lee J, Mauras N, O’Grady M, Ruedy KJ,  
Tansey M, Tsalikian E, Weinzimer S, Wilson DM, Wolpert H, 
Wysocki T, Xing D. Continuous glucose monitoring and intensive 
treatment of type 1 diabetes. N Engl J Med. 2008;359(14):1464–76.

49.	 Magni L, Raimondo DM, Bossi L, Dalla Man C, De Nicolao G, 
Kovatchev B, Cobelli C. Model predictive control of type 1 diabetes: 
an in silico trial. J Diabetes Sci Technol. 2007;1(6):804–12.

50.	 Weinzimer SA, Steil GM, Swan KL, Dziura J, Kurtz N, 
Tamborlane WV. Fully automated closed-loop insulin delivery 
versus semiautomated hybrid control in pediatric patients with 
type 1 diabetes using an artificial pancreas. Diabetes Care.  
2008;31(5):934–9.

51.	 Klonoff DC. Continuous glucose monitoring: roadmap for 21st 
century diabetes therapy. Diabetes Care. 2005;28(5):1231–9.

52.	 Garg S, Zisser H, Schwartz S, Bailey T, Kaplan R, Ellis S,  
Jovanovic L. Improvement in glycemic excursions with a 
transcutaneous, real-time continuous glucose sensor: a randomized 
controlled trial. Diabetes Care. 2006;29(1):44–50.

53.	 Deiss D, Bolinder J, Riveline JP, Battelino T, Bosi E, Tubiana-Rufi N, 
Kerr D, Phillip M. Improved glycemic control in poorly controlled 
patients with type 1 diabetes using real-time continuous glucose 
monitoring. Diabetes Care. 2006;29(12):2730–2.

54.	Kovatchev B, Clarke W. Continuous glucose monitoring (CGM) 
reduces risks for hypo- and hyperglycemia and glucose variability 
in diabetes. 67th Scientific Sessions. 2007.

 by guest on January 26, 2015dst.sagepub.comDownloaded from 

http://dst.sagepub.com/

